Quantitative approaches to sensory information encoding by bat noseleaves and pinnae

Author:

Müller Rolf11

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Shandong University – Virginia Tech International Laboratory, Shandong University, Jinan, People’s Republic of China.

Abstract

The biosonar systems of horseshoe bats (Rhinolophidae) and Old World round leaf-nosed bats (Hipposideridae) incorporate a pervasive dynamic at the interfaces for ultrasound emission (noseleaves) and reception (pinnae). Changes in the shapes of these structures alter the acoustic characteristics of the biosonar system and could hence influence the encoding of sensory information. The focus of the present work is on approaches that can be used to investigate the hypothesis that the interface dynamic effects sensory information encoding. Mutual information can be used as a metric to quantify the extent to which the different ultrasonic emission and reception characteristics (beampatterns) provide independent views of the environment. Two different quantitative approaches have been taken to evaluate the relationship between dynamically encoded additional sensory information and sensing performance in finding the direction of a biosonar target. The first approach is to determine an upper bound on the number of different directions that can be distinguished by virtue of distinct spectral signatures. The second approach is based on a lower bound (Cramér–Rao) on the variance of direction estimates. All these different metrics demonstrate that the peripheral dynamics seen in bats result in the encoding of additional sensory information that is suitable for enhancing biosonar performance.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Reference53 articles.

1. The bat head-related transfer function reveals binaural cues for sound localization in azimuth and elevation

2. On a Statistical Estimate for the Entropy of a Sequence of Independent Random Variables

3. Blauert, J. 1996. Spatial hearing: the psychophysics of human sound localization. Revised edition. MIT Press, Cambridge, Mass.

4. Buck, J. 2002. Information theoretic bounds on source localization performance.InProceedings of 2002 IEEE Sensor Array and Multichannel Signal Processing Workshop, Rosslyn, Va., 4–6 August 2002. IEEE, New York. pp. 184–188. 10.1109/SAM.2002.1191025.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3