Author:
Stone N. W. B.,Read L. A. A.,Anderson A.,Dagg I. R.,Smith W.
Abstract
The collision-induced rotational translational spectrum of gaseous N2 has been measured in the temperature range 228–343 K at six different temperatures. The measurements were made with a Fourier transform spectrometer in the 25 to 360 cm−1 region and at 15.1 and 84.2 cm−1 with far infrared (FIR) laser. Previously obtained microwave data at 2.3 and 4.7 cm−1 have been used in defining the complete spectrum. Using a recently developed theory for quadrupolar-induced absorption, we find that the calculated quadrupole moment is independent of temperature and has a magnitude in close agreement with the recommended values of several other workers; i.e., Q = 1.46 B. The calculated value depends on the particular form of the intermolecular potential and this dependence is examined in some detail. A contribution to the absorption originating primarily from hexadecapolar and overlap induction has been observed in agreement with theoretical estimates and leads to an estimated value for the hexadecapolar moment [Formula: see text].
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献