Omega-3E treatment regulates matrix metalloproteinases and prevents vascular reactivity alterations in diabetic rat aortaThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research.

Author:

Zeydanli Esma N.1,Turan Belma1

Affiliation:

1. Department of Biophysics, Faculty of Medicine, Ankara University, Ankara 06100, Turkey.

Abstract

It is known that increased generation of oxidants and (or) reduced endogenous antioxidant defense mechanisms are associated with the etiology of diabetic vascular complications. Although a close correlation exists between increased oxidative stress and the activation of matrix metalloproteinases (MMPs), little is known about the effect of hyperglycemia on the regulation and contribution of MMPs in the vascular system. Therefore, we aimed to examine whether omega-3E (50 mg/kg per day for 4 weeks), a long-chain (n-3) polyunsaturated fatty acid enriched with vitamin E, has a beneficial effect on vascular dysfunction via affecting MMPs in streptozotocin-diabetic rat aorta. Omega-3E treatment improved the diabetes-induced impairment of phenylephrine-induced contraction and isoproterenol-induced relaxation responses of aorta. It also exhibited marked protection against diabetes-induced degenerative changes in smooth muscle cell morphology. Biochemical data showed that this treatment significantly prevented important changes, such as inhibition of MMP-2 and MMP-9 activity, loss of tissue inhibitor of matrix metalloproteinase-4 (TIMP-4) protein, increase in tissue levels of thiol oxidation, endothelin-1, protein kinase C (PKC), and cAMP production, and decrease in tissue level of nitrite. These results indicated that omega-3E significantly improved impaired vascular responses and regulated the activity of MMPs via preventing oxidative injury. Overall, the data suggest that omega-3E ameliorates or prevents vascular reactivity alterations in diabetes. Such an observation provides preliminary evidence for omega-3E’s potential as a therapeutic agent for the prevention of vascular disorders in diabetes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3