A thermal elastic visco-plastic model for soft clayey soils

Author:

Chen Ze-Jian1ORCID,Feng Wei-Qiang23ORCID,Chen Wen-Bo14ORCID,Yin Jian-Hua15ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

2. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China

3. Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China

4. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China

5. Research Institute for Land and Space, The Hong Kong Polytechnic University, Hong Kong SAR, China

Abstract

It is frequently observed that the stress–strain behaviour of soft clayey soils is affected by temperature changes. Development and verification of a reliable constitutive model with consideration of variable temperature conditions are necessary. Due to the significant rheological and other nonlinear properties of clayey soils, the coupled effects of temperature, time dependency, structuration, nonlinear creep, and anisotropy should be considered in the constitutive model. In this study, a new three-dimensional (3D) thermal elastic visco-plastic model is established and verified for the time-dependent stress–strain behaviour of clayey soils considering temperature changes. The model is developed based on the existing elastic visco-plastic models with the equivalent time concept, the overstress theory, and the critical state model. The thermal elastic line and virgin heating line are introduced and generalized to construct constitutive equations for both thermal elastic and thermal visco-plastic behaviour of clayey soils in general stress conditions. After establishing the 3D basic model, further refinement is introduced to consider the nonlinear creep behaviour and structuration for natural and reconstituted clayey soils. Finally, the model is successfully validated by a series of laboratory test data on different clayey soils under variable temperature paths with reasonably good accuracy.

Funder

Hong Kong Polytechnic University

Science, Technology and Innovation Commission of Shenzhen Municipality

Research Institute for Land and Space

Natural Science Foundation of Guangdong Province, China

National Natural Science Foundation of China

Southern Marine Science and Engineering Guangdong Laboratory

Research Grants Council, University Grants Committee

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3