Photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction. Part 7: methanol, conjugated dienes, and 1,4-dicyanobenzene

Author:

McManus Kimberly A.,Arnold Donald R.

Abstract

The scope of the photochemical nucleophile–olefin combination, aromatic substitution (photo-NOCAS) reaction has been extended to include conjugated dienes: 1,3-butadiene (9), 2-methyl-1,3-butadiene (10), 2,3-dimethyl-1,3-butadiene (11), and 2,5-dimethyl-2,4-hexadiene (12). Acetonitrile–methanol solutions of the dienes 9,10, and 11, and 1,4-dicyanobenzene (1), with and without codonor (biphenyl (5)), were irradiated with a medium-pressure mercury vapour lamp through Pyrex. Both 1,2- and 1,4-addition products were formed in approximately equal amounts (combined yields of photo-NOCAS products, 50–65%). In marked contrast, when an acetonitrile–methanol solution of 2,5-dimethyl-2,4-hexadiene (12), 1, and 5 was irradiated, only the 1,4-addition product, trans-2-(4-cyanophenyl)-5-methoxy-2,5-dimethyl-3-hexene (22,82%), was obtained. This photolysate also contained a small amount of another 1,4-addition product, that which had incorporated cyanide ion instead of methanol, trans-2-(4-cyanophenyl)-2,2,5-trimethyl-3-hexenenitrile (23, 2%). Irradiation of an acetonitrile solution (no methanol) of 12,1, and 5 gave 23 in good yield (68%). An excellent yield (80%) of 23 was obtained upon irradiation of an acetonitrile solution of 1,12, 5, potassium cyanide, and 18-crown-6. Addition of 2,4,6-trimethylpyridine (collidine, 25), a mild, non-nucleophilic base, to the reaction mixture diverts the reaction involving 12 from photo-NOCAS products to 1:1 substitution products; 3-(4-cyanophe-nyl)-2,5-dimethyl-1,4-hexadiene (26), trans-5-(4-cyanophenyl)-2,5-dimethyl-1,3-hexadiene (27), (Z)-1-(4-cyanophenyl)-2,5-dimethyl-2,4-hexadiene (28), and (E)-1-(4-cyanophenyl-2,5-dimethyl-2,4-hexadiene (29) were formed. The mechanisms of these reactions are discussed and an explanation for the observed regio- and stereoselectivity is given.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3