THE EFFECT OF SOLUTE ON SLIP AND MECHANICAL TWINNING IN IRON ALLOYS

Author:

Bolling G. F.,Richman R. H.

Abstract

The effects of solute type and concentration upon the nature of, and stresses for, plastic flow in polycrystalline iron solid solutions have been examined. An extensive study was made using Al, Be, Ge, P, Si, and Sn; limited examples with Co, Sb, and Ti are also included. Three experimental observations stand out: (i) At room temperature and lower solute concentration the flow stress for slip increases monotonically with the parameter c|ln km|. Here c is the solute concentration, and the solid–liquid distribution coefficient, km, differentiates the solute type, (ii) At room temperature, there is a transition in the deformation mode from slip to twinning at a concentration that decreases with increasing |ln km|. The actual stresses for mechanical twinning can be compared with those at 77 °K; they are higher and provide a second measure for the deformation-mode transition, (iii) At 77 °K the initial deformation mode is predominantly mechanical twinning, and, below concentrations producing atomic ordering, the initial flow stresses are independent of solute concentration and type.When these observations are accompanied by tests for the propagation-controlled phenomenon of continual mechanical twinning, we deduce the following: (i) and (ii) show that solute promotes mechanical twinning as a consequence of its effect on dislocation behavior, most likely by requiring fast-moving individual dislocations, while (iii) shows that a threshold stress exists for the nucleation of mechanical twins that cannot easily be explained by existing twin-nucleation mechanisms.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3