Precursor utilization of 5-hydroxytryptophan for 5-hydroxytryptamine biosynthesis in isolated and perfused rabbit and rat lungs

Author:

Rao Kodavanti S. Prasada,Mehendale Harihara M.

Abstract

The present study was designed to investigate whether lungs can utilize 5-hydroxytryptophan (5-HTP), formed elsewhere and transported, for the synthesis of 5-hydroxytryptamine (5-HT). [14C]5-HTP uptake was 7.7 ± 1.1 and 3.9 ± 0.2% by rabbit and rat lungs, respectively, after 1 h of perfusion with 10 μM [14C]5-HTP. There was an increase in the lung uptake of [14C]5-HTP when the lungs were preperfused with 0.5 mM chlorphentermine (CP) and the uptake was low when the lungs were preperfused with 0.1 mM hydroxybenzylhydrazine dihydrochloride (HBH). The perfusate concentration of 5-hydroxyindole acetic acid (5-HIAA) increased significantly (3–4 μg/100 mL) during rabbit lung perfusion with 10 μM [14C]5-HTP and this did not change significantly when the lungs were preperfused with 0.5 mM CP. However, 5-HT increased with time in the perfusate, 5-HT, but not 5-HIAA, was detected in the perfusate and increased with time of perfusion when the rat lungs were perfused either with 10 μM 5-HTP or with 0.5 mM CP and 10 μM 5-HTP. However, no metabolites were detected in either the rabbit lung or rat lung perfusates when they were preperfused with 0.1 mM HBH. Lung contents of 5-HT and 5-HIAA were significantly higher in the rat lungs and only 5-HIAA increased in rabbit lungs after 1 h of perfusion with 10 μM 5-HTP. Preperfusion with 0.5 mM CP resulted in a greater increase in the 5-HT content of both rabbit and rat lungs. When the lungs were preperfused with 0.1 mM HBH, [14C]5-HT formation from [14C]5-HTP was obtunded. Homogenates of rabbit and rat lungs incubated with [14C]5-HTP (10 μM) resulted in the formation of substantial amounts of [14C]5-HT and [14C]5-HIAA. Incubations with CP (0.5 or 1 mM) resulted in significant increases of 5-HT levels and a corresponding significant reduction in 5-HIAA levels. On the other hand, incubations with HBH (0.1 mM) resulted in significant inhibition of 5-HT and 5-HIAA formation. 5-HT formation from 5-HTP by rat and rabbit lungs in in vitro incubations is in consonance with the perfusion experiments. These results provide evidence that lung can synthesize 5-HT from the circulating 5-HTP, and pulmonary contribution of 5-HT to the circulating levels is possible.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3