Author:
Burke D. G.,Waddington J. C.,Nelson D. E.,Buckley J.
Abstract
Triton spectra from the 150Nd(d, t)149Nd reaction have been measured at 15 angles using beams of 12 MeV deuterons. The 150Nd(3He, α)149Nd reaction was studied at four angles with 24 MeV 3He beams. In all cases the reaction products were analyzed with an Enge-type magnetic spectrograph and detected with photographic emulsions. The peak widths (FWHM) were approximately 8 keV for the (d, t) studies and 25 keV for the (3He, α) spectra. It is now evident that the highest energy triton group ascribed to the 150Nd(d, t)149Nd reaction in previous works does not correspond to the ground state transition. According to the current interpretation the ground state transition has a Q value of −1.122 ± 0.010 MeV. The (d, t) angular distributions and the ratios of (3He, α) and (d, t) cross sections at selected angles were used to determine l values for a number of the transitions. Three states in 149Nd at 481, 813, and 986 keV are definitely populated by l = 0 transitions and thus have Iπ = 1/2+. A strongly perturbed band consisting of a mixture of Nilsson states from the i13/2 shell has been found, with properties similar to the corresponding bands in the isotones 151Sm and 153Gd. The total observed intensity for each of the l values 0, 1, 2, and 6 cannot be explained by the extreme single-particle shell model but is consistent with that predicted by the Nilsson model. However, the splitting of the strength among the observed states cannot be explained by the basic Nilsson model.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献