Trace-level quantification of N-nitrosopiperazine in treated wastewater using supported liquid extraction and hydrophilic interaction chromatography mass spectrometry

Author:

Lapointe Anthony11,Gallant Stéphanie11,Comtois-Marotte Simon11,Furtos Alexandra11,Waldron Karen C.11

Affiliation:

1. Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.

Abstract

Regenerable amine-based solvents used for post-combustion CO2 capture, primarily monoethanolamine and piperazine, are known to undergo degradation and secondary reactions over time forming, amongst other species, N-nitrosamines. These carcinogenic species can eventually make their way from treated wastewater into environmental waters. The United States Environmental Protection Agency (US EPA) recommends that the concentration of N-nitrosamines in surface water not exceed 1.24 μg/L. We have developed a straightforward method to quantify N-nitrosopiperazine in treated wastewater by hydrophilic interaction liquid chromatography – mass spectrometry (HILIC–MS) after sample preparation by supported liquid extraction (SLE). To achieve the best extraction recovery and method limits of quantification (MLOQ), standards were prepared in a high-salt synthetic matrix to mimic the treated wastewater effluent. To further improve the MLOQ, the drying steps after extraction were optimized. HILIC separation of the highly polar analytes was achieved using an ethylene-bridged hybrid amide stationary phase. Detection was achieved using a triple quadrupole mass spectrometer operated in positive electrospray ionisation and multiple reaction monitoring mode, providing a final MLOQ of 0.25 μg/L for N-nitrosopiperazine. Validation of the method was carried out to ensure good confidence in the data obtained for a treated wastewater sample from a post-combustion CO2 capture facility. In addition, N-nitrosopiperazine was quantified with the developed SLE-HILIC–MS method in eight degraded carbon capture samples that had not yet undergone wastewater treatment.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3