Correlation Between Changes in the Endogenous Energy Stores and Myocardial Function due to Hypoxia in the Isolated Perfused Rat Heart

Author:

Dhalla N. S.,Yates J. C.,Walz D. A.,McDonald V. A.,Olson R. E.

Abstract

On perfusing the isolated rat heart for 7 min with substrate-free hypoxic medium, the contractile force, rate of change of contractile force, time to peak tension, and heart rate declined whereas resting tension increased. The coronary flow and the pH of the perfusate reached maximum and minimum values, respectively, within 2 min of hypoxia whereas the optical density of the perfusate at 260 mμ increased progressively over the 7 min of perfusion with hypoxic medium. The levels of glycogen, creatine phosphate, and ATP declined whereas the concentrations of lactate, ADP, AMP, creatine, and Pi increased during the 1st min of hypoxia at which time the contractile force and heart rate decreased by about 20% of the control values. During the 1st min of hypoxia the diminution in phosphate potential and creatine phosphate/Pi ratio was found to be of greater magnitude than that in the contractile force. Between 2 and 7 min of perfusion with hypoxic medium a marked reduction in contractile force occurred without appreciable changes in the coronary flow, the phosphate potential, the levels of ADP and AMP, and creatine phosphate/Pi ratio. No change in myocardial lipids occurred under the present experimental conditions whereas changes in the electrical activity, time for half relaxation, norepinephrine stores, and mitochondrial structure lagged behind the changes in the high energy phosphate stores due to hypoxia. Although a clear relation between changes in the cardiac function and any one biochemical parameter throughout the period of hypoxia is not apparent from this study, the onset of failure of the hypoxic heart to generate contractility may be considered due to an insufficiency in the process of energy generation. The complete inability of the hypoxic heart to develop contractile force may be due to abnormalities in the processes of energy utilization subserving the mechanisms for the maintenance of ionic gradient and excitation–contraction coupling.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3