Expanding collapse in partially submerged granular soil slopes

Author:

Michalowski Radoslaw L.1

Affiliation:

1. Department of Civil And Environmental Engineering, University of Michigan, 2340 G.G. Brown Bldg., Ann Arbor, MI 48109, USA (e-mail: ).

Abstract

The traditional approach to stability analysis of granular slopes leads to the safety factor that is associated with a planar failure surface approaching the slope face, whether the slope is “dry” or submerged. However, for partially submerged slopes, a more critical, nonplanar failure surface can be formed. A family of geometrically similar surfaces can be found that is characterized by the same safety factor. If the safety factor drops down to unity and the slope becomes unstable, then a mechanism of any size can form. Alternatively, the failure may start at some small region and then the volume of the mechanism of failure can expand, giving rise to a progressive failure of a different kind that is typically associated with slopes. This progression has the character of a “disturbance” or a shock-like kinematic discontinuity propagating into the soil at rest. A quantitative analysis is presented and it is demonstrated that the soil dilates while the mechanism expands, leaving the slope weakened and susceptible to a deep failure. This is a plausible mode of failure of partially submerged slopes, the type that is most likely responsible for large subaqueous landslides, and is similar to the well-documented instability propagation in “quick clay.”

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3