Affiliation:
1. Department of Physiology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand.
2. Consortium for Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand.
3. Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
Abstract
Hyperprolactinemia caused by physiological or pathological conditions, such as those occurring during lactation and prolactinoma, respectively, results in progressive osteopenia. The underlying mechanisms, however, are controversial. Prolactin (PRL) may directly attenuate the functions of osteoblasts, since these bone cells express PRL receptors. The present study therefore aimed to investigate the effects of PRL on the expression of genes related to the osteoblast functions by using quantitative real-time PCR technique. Herein, we used primary osteoblasts that were derived from the tibiae of adult rats and displayed characteristics of differentiated osteoblasts, including in vitro mineralization. Osteoblasts exposed for 48 h to 1000 ng/mL PRL, but not to 10 or 100 ng/mL PRL, showed decreases in the mRNA expression of Runx2, osteoprotegerin (OPG), and receptor activator of nuclear factor κB ligand (RANKL) by 60.49%, 72.74%, and 87.51%, respectively. Nevertheless, PRL did not change the RANKL/OPG ratio, since expression of OPG and RANKL were proportionally decreased. These concentrations of PRL had no effect on the mRNA expression of osteocalcin and osteopontin, nor on mineralization. High pathologic concentrations of PRL (1000 ng/mL) may downregulate expression of genes that are essential for osteoblast differentiation and functions. The present results explained the clinical findings of hyperprolactinemia-induced bone loss.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献