Rate-limited cation exchange in thin bentonitic barrier layers

Author:

Jo Ho Young,Benson Craig H,Edil Tuncer B

Abstract

A three-compartment model was developed for simulating cation transport in bentonitic barrier layers that incorporates diffusion-controlled cation exchange among the mobile intergranular water (bulk pore water), immobile interparticle and interlayer water, and the montmorillonite mineral solid. Exchange on the external surfaces and interlayer region of montmorillonite is included. The model was evaluated for divalent-for-monovalent cation exchange in bentonite with experiments. A parametric study was conducted using the model to investigate factors affecting the time required to establish chemical equilibrium (i.e., completion of cation exchange) between the permeant liquid and thin layers of bentonite simulating geosynthetic clay liners (GCLs). Predictions obtained with the model were in general agreement with the data without calibration, except for Na concentrations in the effluent at very long times. Parametric simulations conducted with the model show that the time required to establish chemical equilibrium in GCLs is affected by the rate at which adsorbing cations are delivered to the pore space (affected by seepage velocity or influent concentration), the rate of mass transfer between the mobile and immobile liquid phases (controlled primarily by granule size of the bentonite), and the number of sites available for sorption (controlled by CEC and the dry density of the bentonite).Key words: bentonite, montmorillonite, exchange complex, diffusion, immobile liquid, interlayer.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3