A study on fluorescence quenching of a laser dye by aromatic amines in alcohols

Author:

Deepa H.R.1,Thipperudrappa J.1,Suresh Kumar H.M.2

Affiliation:

1. Department of Physics, B.N.M. Institute of Technology, Bangalore 560 070, India.

2. Department of Physics, Siddaganga Institute of Technology, Tumkur 572 103, India.

Abstract

The fluorescence quenching of 1,2,3,8-tetrahydro-1,2,3,3,8-pentamethyl-5-(trifluoromethyl)-7H-pyrrolo[3,2-g]quinolin-7-one (LD-473) by aromatic amines, namely, aniline, dimethyl aniline, and diethyl aniline, in methanol, ethanol, propanol, and butanol has been studied at room temperature using steady-state and time-resolved methods. A positive deviation from linearity has been observed in Stern–Volmer (S–V) plots. Various quenching rate parameters have been determined using the extended S–V equation and are found to be dependent on the dielectric constant of alcohols. The quenching ability of amines increases with increasing their ionization energies. Further, with the use of the sphere of action, static quenching model, and finite sink approximation model, it is concluded that the bimolecular quenching reactions are due to the combined effect of both dynamic and static quenching processes.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Reference26 articles.

1. Bioanalytical applications of fluorescence quenching

2. Correspondence

3. J.R. Lackowicz. Principle of Fluorescence Spectroscopy. Springer, New York, 2006.

4. K.K. Rohatgi-Mukherjee. Fundamentals of Photochemistry. New Age International (P) Ltd., New Delhi, 2008.

5. Static and dynamic model for 1-naphthol fluorescence quenching by carbon tetrachloride in dioxane—acetonitrile mixtures

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3