The motion of test particles and cosmological interpretations: the role of MOND

Author:

Bothun G.1

Affiliation:

1. Department of Physics, University of Oregon, 1585 E 13th Ave., Eugene, OR 97403, USA.

Abstract

Throughout history, observations of the motions of objects in the Universe have provided the foundation for various cosmological models. In many cases, the invoked causes of the observed motion appeal to mysterious elements. Indeed, the very first test motion was that of the retrograde motion of Mars, which lead to a required epicycle to save the model (e.g., Ptolemy’s unmoving Earth). By the early 1840s, from approximately 50 years of orbital data (since its 1789 discovery) it was apparent that Uranus was disobeying the Newtonian rules in its orbit and speculation mounted that a “large unseen mass” was perturbing the orbit. Using Uranus as a test particle then yields the first notion of dark matter (DM). Alas, it was not DM but merely Neptune, discovered in September 1846. By 1859 enough data had been gathered to reveal that Mercury is also not obeying Newtonian physics but rather revealing curved space–time. The continuation of this history is now set in scales larger than the Solar System. Observations suggest two basic choices: (i) gravity is fully understood and Newton’s second law is invariant (except in very strong gravity) and observed motions on galactic scales require the existence of DM (a currently unproven “epicycle”) or (ii) Newton’s second law can be modified (e.g., MOND) in certain low acceleration scale environments. In this contribution we discuss the case for and against MOND on various scales and conclude that neither MOND nor our current cosmology (ΛCDM) consistently explain all observed phenomena. In general, MOND works much better on small scales than ΛCDM but encounters difficulties on large scales. Moreover, the nature of the acoustic power spectrum of the CMB now pretty clearly shows that a fully baryonic Universe is ruled out, thus necessitating some DM component. But this should not diminish the consideration of MOND as its introduced acceleration scale; ao is fully consistent with the observed structural properties of galaxies in a way that the DM halo paradigm cannot match. Indeed, despite many attempts to falsify MOND, it has always come back from its proclaimed death to provide unique insights into the gravitational nature of galaxies, consistently raising the specter that our current understanding of gravity acting over large spatial scales may be flawed.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modified gravity and large scale flows;Astrophysics and Space Science;2015-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3