Author:
Wright Marcia M,Howe Alicia G,Zaremberg Vanina
Abstract
The apoptotic program utilizes cellular membranes to transduce and generate operative signals. Lipids are major components of cellular membranes and have the potential to control the effectiveness of the signal by directing it to the proper location, being a source of new signals or as mediators in the response. These possible lipid functions are illustrated in the present review, focussing on the role that two different phospholipids, cardiolipin and phospha tidyl choline, play in apoptosis. Mitochondria have a central role in apoptosis, and many important aspects of the process mediated by this organelle converge through its distinctive lipid cardiolipin. Specifically, changes in cardiolipin metabolism have been detected in early steps of the death program and it is postulated (i) to mediate recruitment of pro apop totic proteins like Bid to the mitochondria surface and (ii) to actively participate in the release of proteins relevant for the execution phase of apoptosis, like cytochrome c. Unlike the organelle specific distribution of cardiolipin, phos pha tidylcholine is widely distributed among all organelles of the cell. The importance of phosphatidylcholine in apop tosis has been approached mainly through the study of the mode of action of (i) phosphatidylcholine anticancer analogues such as edelfosine and (ii) molecules that alter phosphatidylcholine metabolism, such as farnesol. The contribution of phosphatidylcholine metabolism to the apoptotic program is discussed, analyzing the experimental evidence available and pointing out some controversies in the proposed mechanisms of action.Key words: cardiolipin, phosphatidylcholine, apoptosis, edelfosine, farnesol.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献