Author:
Watts Andrew G,Withers Stephen G
Abstract
Sialyl hydrolases, trans-sialidases, and sialyl transferases are biologically important enzymes that are responsible for the incorporation and removal of sialic acid residues, which decorate many cell surface glycocongugates. Two fluorinated sialic acid derivatives have been synthesized as mechanism-based inactivators, to probe the catalytic mechanisms through which sialidases and trans-sialidases operate. Both compounds are known to be covalent inactivators of a trans-sialidase from Trypanosoma cruzi. Here, 3-fluorosialosyl fluoride has been found to covalently label the catalytic nucleophile of a sialidase from T. rangeli, and the residue involved is shown to be Tyr346 within the sequence DENSGYSSVL. This is the first demonstration that sialidases operate through a covalent glycosyl-enzyme intermediate, strongly suggesting a common catalytic mechanism amongst all members of the sialidase superfamily. CMP-3-fluoro sialic acid is a competitive inhibitor of sialyl transferases and was synthesized via a two-step enzymatic process from commercially available N-acetyl mannosamine, 3-fluoropyruvic acid, and cytidine triphosphate in around 84% yield.Key words: sialidase, mechanism, labeling, nucleophile, inhibitor.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献