Numerical modeling of progressive failure of rigid piles under embankment load

Author:

Zheng Gang123,Yang Xinyu12,Zhou Haizuo12,Chai Jinchun4

Affiliation:

1. School of Civil Engineering, Tianjin University, Tianjin 300072, China.

2. Key Laboratory of Coast Civil Structure Safety, Tianjin University, Ministry of Education, Tianjin 300072, China.

3. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China.

4. Graduate School of Science and Technology, Saga University, Saga, Japan.

Abstract

Rigid piles (e.g., concrete piles) have been widely used to improve soft clay for the rapid construction of embankments. In this study, a damage plasticity model that considers the brittle failure behavior of concrete and the frictional properties along cracks is proposed to study the progressive failure of rigid piles under an embankment load. The mechanical characteristics of piles in different locations have been analyzed. The results show that the essential failure mode for rigid piles is tensile failure, which is primarily governed by the distribution of the bending moment and the axial force within the piles. Pile rupture releases stress and causes a significant increase in the tensile stress within neighboring piles, possibly leading to the progressive failure of adjacent piles. Failure in the upper section of piles ultimately leads to the propagation of a slip surface and the global failure of the embankment. The parametric analysis indicates that increases in the pile stiffness and the embankment load result in a higher tensile stress within the piles and a change in the failure mechanism from shear failure to bending failure. In addition, a failure envelope is proposed to determine the failure mode of the piles.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3