Positronium–atom scattering

Author:

McAlinden Mary T.,MacDonald F. G. R. S.,Walters H. R. J.

Abstract

Calculations of total cross sections for Ps(1 s) scattering by atomic hydrogen, helium, and argon are reported for the energy range 0–150 eV. The results for atomic hydrogen have been evaluated exactly within the first Born approximation. For collisions with helium and argon in which the target remains in its initial state (so called target elastic collisions) it is assumed that the positronium scatters off a frozen target atom and a coupled positronium pseudostate approximation is then used to calculate the cross sections. For collisions in which the target atom is excited or ionized (target inelastic collisions) the first Born approximation is adopted. Here there is a significant problem in summing over all final states of the target and for this a scheme due to Hartley and Walters has been employed. It is found that for the light targets, hydrogen and helium, target inelastic collisions become dominant above 45 and 105 eV, respectively, while for the heavier argon atom, target elastic scattering is always more important. Except at the lowest energies, and for both target elastic and target inelastic collisions, positronium ionization is the main outcome of the collision for all three atoms. There is an encouraging degree of agreement at the higher energies with the total cross-section measurements of Zafar et al. and Laricchia et al. for helium and argon. The present approximations do not include electron exchange between the positronium and the atom which may be the main source of disagreement between theory and experiment elsewhere.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3