Author:
Ouameur A Ahmed,Malonga H,Neault J F,Diamantoglou S,Tajmir-Riahi H A
Abstract
Taxol (paclitaxel) is an anticancer drug that interacts with microtubule proteins in a manner that catalyzes their formation from tubulin and stabilizes the resulting structures. However, in the human lung tumor cell, the concentration of paclitaxel is highest in the nucleus. Therefore, it was of interest to examine the interaction of taxol with DNA and RNA in aqueous solution at physiological pH. Capillary electrophoresis and Fourier transform infrared (FTIR) difference spectroscopic methods were used to characterize the nature of drugDNA and drugRNA interactions and to determine the taxol binding site, the binding constant, the sequence selectivity, the helix stability, and the biopolymer secondary structure in the taxolpolynucleotide complexes in vitro. The FTIR spectroscopic studies were conducted with taxol/polynucleotide (phosphate) ratios of 1/80, 1/40, 1/20, 1/10, 1/4, and 1/2 with a final DNA(P) or RNA(P) concentration of 12.5 mmol/L, and capillary electrophoresis was performed after incubation of taxol with polynucleotides at ratios of 1/200 to 1/12 with a final polynucleotide concentration of 1.25 mmol/L. Taxol was shown to bind to DNA and RNA at GC, AT, or AU bases and the backbone PO2group. Two types of binding were observed for taxolDNA with K1 = 1.3 × 104L mol1and K2 = 3.5 × 103L mol1, whereas taxolRNA complexes showed one type of binding with K = 1.3 × 104L mol1. The taxolpolynucleotide complexation is associated with a partial helix stabilization and no major alterations of B-DNA or A-RNA structure. Key words: DNA, RNA, taxol, binding site, binding constant, conformation, helix stability, electrophoresis, FTIR spectroscopy.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献