Abstract
Mitigation of the hazards posed by debris flows requires an understanding of the mechanisms leading to their initiation. The objectives of this study were to evaluate and document the hydrologic response of a potential debris-flow source area to major rainstorms and to evaluate whether traditional models of hillslope hydrology can account for the observed response. A field site in an area of previous debris-flow activity was instrumented and monitored for two winter seasons. Hydrologic responses for a wide variety of antecedent conditions were recorded, including two storm events that produced well-defined positive pore-pressure pulses at the site and initiated numerous debris flows in the immediate vicinity of the site. The observed hydrologic response was highly dependent on antecedent moisture conditions which can be characterized by soil matric suction measurements. The pressure-head pulses observed had a magnitude of approximately 50 cm of water, were transient, traveled downslope, and exhibited some spatial variability. Traditional models of hillslope hydrology do not fully account for the positive pore-pressure pulses observed high on the hillslope. Key words: debris flow, hillslope hydrology, pore pressure, antecedent moisture, tensiometer, piezometer, field investigation.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
226 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献