Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform and non-uniform heated bottom wall

Author:

Nazeer Mubbashar11,Ali N.11,Javed Tariq11

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan.

Abstract

Buoyancy-driven, incompressible, two-dimensional flow of a micropolar fluid inside an inclined porous cavity in the presence of magnetic field is investigated. The nonlinear partial differential equations are solved by employing a robust Galerkin finite element scheme. The pressure term in this scheme is eliminated by using the penalty method. The results are exhibited in the form of streamlines, isotherms, and local and average Nusselt numbers for two cases, namely, the constant and the sinusoidal heated lower wall of the conduit. In both cases, the side walls of the cavity are cold and the upper side is insulated. The main difference between the two cases is observed from temperature contours. For constant heated bottom wall a finite discontinuity appears in the temperature distribution at the corners of the bottom wall. In contrast, no such discontinuity appears in the temperature distribution for non-uniform heated bottom wall. The quantitative changes in temperature contours in different portions of the cavity are identified by comparing the results for both cases. The code is also validated and benchmarked with the previous numerical data available in the literature. It is found that the magnetic field inclined at a certain angle either suppresses or enhances the intensity of primary circulations depending on the inclination of the cavity. Further, the average Nusselt number at the bottom wall is higher when magnetic field is applied vertically irrespective of the inclination of cavity. The analysis presented here has potential application in solar collectors and porous heat exchangers.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3