Author:
Carnini Anna,Phillips Heather A,Shamrakov Leanne G,Cramb David T
Abstract
A universal mechanism for the action of general anesthetics (GA) is not yet available. In this study, we investigated the interaction between halothane and 1,2-dipalmitoyl-sn-3-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-3-glycero-3-phosphocholine (DOPC) bilayers labeled with Laurdan, Prodan, and NBD-C6-PC as the reporter probes using steady-state fluorescence spectroscopy. We have evidence that halothane is located on the acyl chain side, near the headgroup region of the bilayer. Additionally, we find that halothane may be inhomogeneously distributed within DOPC and DPPC bilayers. We also show data that indicate halothane increases the free volume available to fluorescent probes. Differential scanning calorimetry and UV scanning calorimetry experiments were implemented to further observe the effects of halothane addition to the DPPC lipid bilayer. A significant shift of the phase-transition temperature of the DPPC system was observed. Our findings suggest that general anesthetic lipid bilayer interactions may play a significant role in the overall mechanism of anesthetic action, and these effects should not be ignored when interactions between membrane proteins and anesthetics are considered.Key words: liposomes, anesthesia, fluorescence, phase transition, phospholipid bilayers.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献