Theoretical and experimental approaches to the effects of solvation on the small internal rotational potential of benzal fluoride

Author:

Schaefer Ted,Bernard Guy M.,Bekkali Younes,McKinnon David M.

Abstract

The internal rotational potential for benzal fluoride is computed at various levels of molecular orbital theory, including correlation-gradient, MP2 (frozen core) methods. The perturbations of the potential caused by solvents are calculated with the Onsager model (ellipsoidal cavity with l = 6 in the multipole expansion) as well as with the self-consistent isodensity – polarizable continuum model (SCI–PCM). Analysis of the 1H and 19F nuclear magnetic resonance spectra in cyclohexane-d12 and acetone-d6 solutions yields long-range spin–spin coupling constants from which the expectation values of [Formula: see text] can be derived. These expectation values can be compared with those calculated from the theoretical internal rotational potential. Reasonable agreement is found for potentials obtained from MP2/6-31G* approaches in both solvent models. Long-range coupling constants between 19F and 13C nuclei are also reported and provide very rough checks of the [Formula: see text] values. For the isolated molecule an additivity scheme based on the potential for benzyl fluoride reproduces much of the potential for benzal fluoride except for a deviation caused by the rather larger relative magnitude of the fourfold component in the latter. The minimum in the potential for benzal fluoride occurs for a torsional angle, [Formula: see text] of 90° corresponding to a conformation in which the C—H bond of the side chain lies in a plane perpendicular to the phenyl plane and is rationalized on the basis of electrostatic forces. The conformations of minimum energy for the benzyl and benzal fluorides and chlorides are compared and contrasted. The magnitudes of the internal potentials of the fluorides are only a little larger than thermal energies at 300 K and can become smaller than the latter in soludon. Key words: NMR spectroscopy, of benzal fluoride; spin–spin coupling constants, long range in benzal fluoride; solvent effects, on internal rotational potential in benzal fluoride; molecular orbital computations, structure, internal rotational potential, and its solvent perturbations in benzal fluoride; benzal fluoride, 1H, 19F, and 13C NMR on, internal rotational potential, MO computations.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3