Seasonal and temperature effects on mycorrhizal activity and dependence of cool- and warm-season tallgrass prairie grasses

Author:

Bentivenga S. P.,Hetrick B. A. D.

Abstract

Previous research on North American tallgrass prairie grasses has shown that warm-season grasses rely heavily on vesicular–arbuscular mycorrhizal symbiosis, while cool-season grasses are less dependent on the symbiosis (i.e., receive less benefit). This led to the hypothesis that cool-season grasses are less dependent on the symbiosis, because the growth of these plants occurs when mycorrhizal fungi are inactive. Field studies were performed to assess the effect of phenology of cool- and warm-season grasses on mycorrhizal fungal activity and fungal species composition. Mycorrhizal fungal activity in field samples was assessed using the vital stain nitro blue tetrazolium in addition to traditional staining techniques. Mycorrhizal activity was greater in cool-season grasses than in warm-season grasses early (April and May) and late (December) in the growing season, while mycorrhizal activity in roots of the warm-season grasses was greater (compared with cool-season grasses) in midseason (July and August). Active mycorrhizal colonization was relatively high in both groups of grasses late in the growing season, suggesting that mycorrhizal fungi may proliferate internally or may be parasitic at this time. Total Glomales sporulation was generally greater in the rhizosphere of cool-season grasses in June and in the rhizosphere of the warm-season grasses in October. A growth chamber experiment was conducted to examine the effect of temperature on mycorrhizal dependence of cool- and warm-season grasses. For both groups of grasses, mycorrhizal dependence was greatest at the temperature that favored growth of the host. The results suggest that mycorrhizal fungi are active in roots when cool-season grasses are growing and that cool-season grasses may receive benefit from the symbiosis under relatively cool temperature regimes. Key words: cool-season grasses, tallgrass prairie, vesicular–arbuscular mycorrhizae, warm-season grasses.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3