Effect of canola (Brassica napus) cultivar rotation on Plasmodiophora brassicae pathotype composition

Author:

Cao Tiesen1,Manolii Victor P.1,Zhou Qixing2,Hwang Sheau-Fang1,Strelkov Stephen E.1

Affiliation:

1. Department of Agricultural, Food and Nutritional Science, 410 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.

2. Crop Diversification Centre North, Alberta Agriculture and Forestry, Edmonton, AB T5Y 6H3, Canada.

Abstract

In Canada, clubroot (Plasmodiophora brassicae) disease is managed mainly by planting clubroot resistant (CR) canola (Brassica napus). New pathotypes of P. brassicae have emerged recently, however, which are virulent on most CR canola cultivars. To understand the impact of cultivar rotation on pathotype abundance, greenhouse experiments were conducted in which different canola cultivar rotations were grown in a soil mix containing equal amounts of pathotypes 5X and 3, which are virulent and avirulent, respectively, on CR canola. The rotation treatments included: T1, the same susceptible cultivar planted over four cycles; T2, the same CR cultivar planted over four cycles; and T3, different CR cultivars planted in each cycle. Clubroot severity increased from cycles one to four in all treatments, with the exception of one CR cultivar in T3 that may carry a different source of resistance. Pathogen populations were recovered with a susceptible bait crop and pathotyped on the differentials of Williams plus a CR host (B. napus ‘Mendel’). The percentage of galls classified as pathotype 5X in T1 declined from 50% to 6.7% over the course of the experiment, while galls classified as pathotype 5X increased from 50% to 66.7% in both T2 and T3. Quantitative PCR analysis of the soil with pathotype 5X-specific primers generally confirmed an increase in 5X DNA. The results suggest that continuous planting of CR canola favours a rapid proliferation of virulent pathotypes of P. brassicae, as indicated by the increases in pathotype 5X observed in this study.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3