4-Acylamino-4H-1,2,4-triazoles and related structures: new investigations of their chemical and physicochemical properties associated with their particular exocyclic amide function

Author:

Pirotte Bernard,Tullio Pascal De,Masereel Bernard,Schynts Marc,Delarge Jacques,Dupont Léon,Thunus Léopold

Abstract

The acido-basic behavior of 4-acylamino-4H-1,2,4-triazoles and of the related structures, 4-acylamino-4H-1,2,4-triazolium salts, 4-acylamino-1,2,4-triazoline-3-thiones, and 4-acylamino-1,2,4-triazolin-3-ones, has been compared. Among the triazolium salts examined, the 1-carboxymethyl-4-phenylacetylamino derivative has been selected as a particular triazolium salt bearing two acidic centres, a carboxylic acid group and an exocyclic amide group. This compound has been isolated in three different ionic forms corresponding to different protonation and deprotonation states of the molecule. For these compounds, IR, NMR, and X-ray data were compared and the preferential localization site of the labile proton on the betainic intermediate structure has been discussed. Taking into account that deprotonation of the amide function of 4-acylamino-4H-1,2,4-triazolium salts may introduce a negative pole in the proximity of the strong electrophilic carbon atom in the 2-position of the ring, reactivity of different triazolium salts toward the nucleophilic addition of the hydride ion has been compared. In particular, 4-acylamino-4H-1,2,4-triazolium salts free of alkyl substituent on the amide nitrogen failed to give the corresponding 4-acylamino-Δ2-1,2,4-triazolines after reaction with the hydride ion, while, under the same conditions, the 4-N-methyl derivatives were transformed into this unusual ring system in good yields. In this case, no decrease of reactivity toward the nucleophilic agent was observed since, as a result of the N-al-kylation, no deprotonation of the amide group can occur in these alkaline experimental conditions.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3