Abstract
Selenium-77 and phosphorus-31 spin-lattice relaxation times are reported for tri-tert-butylphosphine selenide in chloroform-d, at 303 K and at several different magnetic field strengths. At moderate fields the 31P–1H dipole–dipole, spin-rotation, and chemical shift anisotropy mechanisms contribute significantly towards the 31P T1. At high fields chemical shift anisotropy dominates. The selenium-77 nuclear spin relaxes almost exclusively by spin rotation at low to moderate fields and the chemical shift anisotropy contribution only becomes significant at very high fields. This is due to an unusually small 77Se CSA. The contribution due to 31P–77Se dipole–dipole interactions is small but significant. Key words: 77Se NMR, NMR relaxation, phosphine selenide.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献