Further studies on the collision-induced absorption of the fundamental band of hydrogen at room temperature

Author:

Varghese G.,Reddy S. Paddi

Abstract

The collision-induced infrared absorption of the fundamental band of hydrogen in H2–O2 and H2–Xe mixtures was studied at room temperature at a path length of 105.2 cm at pressures up to 250 atm for different base pressures of hydrogen. The enhancement absorption profiles of the band in H2–O2 mixtures show the usual features of collision-induced absorption. However, the enhancement profiles in H2–Xe mixtures show some interesting new features. These are: the separation between the peaks of the two components of the Q branch remains almost constant with increasing density of the mixture; at all densities, the intensities of these two peaks are almost equal; and the lines of the quadrupolar branches O and S are more pronounced than those in any other binary mixture of hydrogen studied previously. Integrated absorption coefficients were measured for each of the mixtures and the binary and ternary absorption coefficients were derived. The values of the binary coefficients are 6.12 × 10−35 cm6 s−1 for H2–O2, and 11.34 × 10−35 cm6 s−1 for H2–Xe. The ternary coefficient is zero for H2–O2, whereas it has a large negative value for H2–Xe.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3