Urbanization and stream ecosystems: the role of flow hydraulics towards an improved understanding in addressing urban stream degradation

Author:

Anim Desmond Ofosu12,Banahene Patrick3

Affiliation:

1. Cooperative Research Centre for Water Sensitive Cities, Monash University, Clayton VIC 3800, Australia.

2. Sustainability Planning Department, The City of Whittlesea, Melbourne VIC 3752, Australia.

3. Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.

Abstract

Catchment urbanization is widely recognised as a primary driver of stream degradation by increasing stormwater runoff, which causes major changes to key ecosystem processes. Reinstating the “natural” hydrogeomorphic conditions is central in designing successful, self-sustaining restoration actions; however, addressing urban stream degradation by re-establishing the hydrogeomorphic conditions remains a challenge, and comparatively limited measurable progress has been observed, particularly in achieving ecological objectives. This review articulates that stream restoration goals might be better achieved when management measures take a broader approach that considers anticipated hydraulic condition effects that liaise relationships between flow and ecology. The study argues that fluvial systems are characterised by complex and dynamic ecosystem processes primarily governed by the hydraulic conditions (e.g., velocity, depth, shear stress); thus, as the practice of addressing urban stream restoration becomes increasingly common, it is critical to explore and understand the anticipated response of the hydraulic conditions. It describes how hydraulic regime consideration provides further opportunity for a holistic approach to urban stream management given their capacity to account for multiple ecological and geomorphic objectives. This review suggests that developing suitable flow–biota–ecosystem processes nexus is critical to addressing urban stream degradation, and hydraulic consideration in restoration actions provides an important step towards that. It discusses opportunities to evolve management actions to achieve restoration goals by highlighting how the management of the two key levers (addressing altered flow regime and morphology) to improve the hydraulic conditions can help to address the urban stream disturbance.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3