Individual-based dendrogenomic analysis of forest dieback driven by extreme droughts

Author:

Fasanella M.1,Suarez M.L.1,Hasbún R.2,Premoli A.C.1

Affiliation:

1. Laboratorio Ecotono, INIBIOMA-CONICET/Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina.

2. Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Chile.

Abstract

Droughts driven by global change are triggering worldwide forest dieback, a phenomenon that is predicted to worsen. We combined genome-wide single nucleotide polymorphisms (SNPs) and dendrochronological approaches to assess genetically-based individual tree vulnerability to past extreme droughts that caused massive mortality of coihue (Nothofagus dombeyi (Mirb.) Blume) forests in northern Patagonia, Argentina. We collected fresh leaves and wood cores from pairs of trees, one with a healthy crown (HC) and another with a partially affected crown (PA), at four sites impacted by droughts in 1998, 2008, and 2014. We used dendrochronological techniques to estimate parameters in terms of growth trends due to drought and genomic analysis to assess the relationship of genomic variation with water stress. While 5155 neutral loci did not differentiate PA from HC trees, a set of 33 adaptive SNPs did, 8 of which were related to water stress. Association analysis between genomic variants and dendrophenotypic traits yielded 6 SNPs that were associated with a growth measure as resilience to cope with drought. Our preliminary results indicate that susceptibility to drought in N. dombeyi could be determined at the genomic level. The combination of these approaches provides a framework for the identification and analysis of candidate genes for stress response in non-model species.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3