Models to predict whole-disk specific gravity and moisture content in planted longleaf pine from cutover and old field sites

Author:

Raut Sameen11,Dahlen Joseph11,Bullock Bronson11,Montes Cristian11,Dickens David11

Affiliation:

1. Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA 30602, USA.

Abstract

Efforts to restore longleaf pine across the southeast United States have occurred on two distinct site types: cutover forests and old agricultural fields. We measured wood and bark physical properties of unthinned planted longleaf pine from 16 stands across Georgia, ages 12 to 25, with eight stands sampled from each site type. Three-hundred and twenty trees were felled and 3572 disks collected from within the trees. Wood and bark specific gravity (SG), moisture content (MC), and proportion of bark were measured. Non-linear mixed effects models were developed to predict the variation in wood and bark SG with respect to relative height, age, and site type. Cutover sites had higher whole-tree wood SG (0.504 vs 0.455) and bark SG (0.374 vs 0.347) than old agricultural fields. The models explained 50% and 37% of the variability in wood and bark SG, respectively. Moisture content models were fitted as a function of SG for wood (R2 = 0.87) and bark (R2 = 0.71). Bark thickness, dry mass, and green volume were higher for cutover forest sites. Trees sampled included both defect-free and defect-containing trees; however, no significant differences in the wood physical properties were found. These results provide important information for the utilization of plantation longleaf pine.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3