Author:
Frost David J.,Knapp Melinda,Brandt Kim,Shadron Amber,Goldman Robert C.
Abstract
Lipopeptides are antifungal agents that inhibit cell wall β-(1, 3)-glucan biosynthesis in fungal organisms. A mutant resistant to lipopeptides was generated by UV mutagenesis and characterized. The Candida albicans mutant (LP3-1) was stable and showed resistance specificity to a broad range of lipopeptides and certain glycolipid inhibitors. Other antifungal agents with diverse modes of action had a normal minimum inhibitory concentration profile for LP3-1 compared with the wild-type strain (CCH 442). In the in vitro β-(1, 3)-glucan synthase assay, both the lipopeptides and papulacandin-related agents had considerably higher 50% inhibitory concentration values in the LP3-1 strain than in the wild-type strain. In reconstitution assays, the resistance factor was associated with the integral membrane pellet rather than the peripheral GTP-binding protein. The LP3-1 strain had a membrane lipid profile similar to that of the parent strain and was virulent in a murine model of systemic candidiasis. Taken together, these results indicate that the resistance factor is associated with the integral membrane component of β-(1, 3)-glucan synthase. Lipopeptides are common antifungal agents encountered during screening of natural products. The LP3-1 strain was resistant to natural product extracts known to contain various lipopeptides. Thus, LP3-1 can be used in a dereplication assay.Key words: Candida albicans, β-(1, 3)-glucan synthase, lipopeptides, drug resistance.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献