Neither reduced uptake nor increased efflux is encoded by tellurite resistance determinants expressed inEscherichia coli

Author:

Turner Raymond J.,Weiner Joel H.,Taylor Diane E.

Abstract

Rates of uptake of the TeO32−oxyanion were investigated in Escherichia coli cells containing tellurite resistance determinants from both plasmid (RK2Ter, R478, pMER610, MIP233, pHH1508a, pMUR) and chromosomal (tehAB) sources. The uptake was investigated to determine whether or not reduced uptake or increased efflux is involved in the tellurite resistance mechanism. Reduced TeO32−uptake generated by cultures harboring arsABC from the plasmid R773, which has been previously shown to be an oxyanion efflux transporter, was used as the standard. Uptake curves were found to be essentially identical among E. coli cultures harboring the tellurite resistance plasmids RK2Ter, pMER610, pHH1508a, and pMUR and cultures harboring tellurite-sensitive control plasmids. Cultures harboring clones of the tehAB operon from E. coli showed no change in the TeO32−accumulation. Cultures harboring R478 demonstrated reduced uptake. However, a subclone containing only the tellurite resistance determinant displayed no reduced uptake. This suggests that there may be another determinant on R478 other than the primary tellurite resistance determinant that gives rise to TeO32−efflux. These results demonstrate that neither reduced uptake nor increased efflux is responsible for the tellurite resistance in the resistance determinants investigated here.Key words: tellurite resistance, uptake, metal resistance, resistance.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3