Author:
Canfield Jr. Daniel E.,Bachmann Roger W.
Abstract
A model for the prediction of total phosphorus was developed and tested using data on 704 nautral and artificial lakes including 626 lakes in the U.S. Environmental Protection Agency (EPA) National Eutrophication Survey. A statistical analysis showed that the best estimate for the sedimentation coefficient (σ) in the Vollenweider equation was[Formula: see text]for artificial lakes where L is the areal phosphorus loading rate (mg∙m−2∙yr−1) and z is the mean depth (m). The model yields unbiased estimates of phosphorus concentrations over a wide range of lake types and has a 95% confidence interval of 31–288% of the calculated total phosphorus concentration. Other models are less precise. Though total phosphorus concentrations can be predicted equally well in natural and artificial lakes, predictions of algal densities and water transparency are less reliable in artificial lakes, as the phosphorus–chlorophyll and chlorophyll–Secchi depth relationships are less precise. This seems to be due to the influence of nonalgal particulate materials.Key words: phosphorus models, eutrophication, lake trophic state
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
266 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献