Author:
Love J. P.,Burd H. J.,Milligan G. W. E.,Houlsby G. T.
Abstract
The effectiveness of geogrid reinforcement, placed at the base of a layer of granular fill on the surface of soft clay, has been studied by small-scale model tests in the laboratory. In the tests, monotonic loading was applied by a rigid footing, under plane strain conditions, to the surface of reinforced and unreinforced systems, using a range of fill thicknesses and subgrade strengths. Continuous measurements were made of footing load and footing displacement, and deformations of the subgrade and of the geogrid reinforcement were measured from photographs. From these measurements the different mechanisms of failure in the unreinforced and reinforced system were established. Performance of reinforced systems was found to be superior even at small deformations, owing to the significant change in the pattern of shear forces acting on the surface of the clay, brought about by the presence of the reinforcement. Membrane action of the reinforcement only became significant at large deformations.A finite element computer program has been specially formulated to allow inclusion of a thin reinforcing layer, and to handle correctly the large deformations and strains induced in the physical models. This formulation is able to reproduce satisfactorily the main features of behaviour observed in the models, and may now be used with some confidence to perform accurate predictions for full-scale structures. Key words: bearing capacity, clays, finite elements, foundations, geotextile, granular materials, model tests, reinforced soil, roads.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献