Allometry of diving capacity in air-breathing vertebrates

Author:

Schreer Jason F.,Kovacs Kit M.

Abstract

Maximum diving depths and durations were examined in relation to body mass for birds, marine mammals, and marine turtles. There were strong allometric relationships between these parameters (log10transformed) among air-breathing vertebrates (r = 0.71, n = 111 for depth; r = 0.84, n = 121 for duration), although there was considerable scatter around the regression lines. Many of the smaller taxonomic groups also had a strong allometric relationship between diving capacity (maximum depth and duration) and body mass. Notable exceptions were mysticete cetaceans and diving/flying birds, which displayed no relationship between maximum diving depth and body mass, and otariid seals, which showed no relationship between maximum diving depth or duration and body mass. Within the diving/flying bird group, only alcids showed a significant relationship (r = 0.81, n = 9 for depth). The diving capacities of penguins had the highest correlations with body mass (r = 0.81, n = 11 for depth; r = 0.93, n = 9 for duration), followed by those of odontocete cetaceans (r = 0.75, n = 21 for depth; r = 0.84, n = 22 for duration) and phocid seals (r = 0.70, n = 15 for depth; r = 0.59, n = 16 for duration). Mysticete cetaceans showed a strong relationship between maximum duration and body mass (r = 0.84, n = 9). Comparisons across the various groups indicated that alcids, penguins, and phocids are all exceptional divers relative to their masses and that mysticete cetaceans dive to shallower depths and for shorter periods than would be predicted from their size. Differences among groups, as well as the lack of relationships within some groups, could often be explained by factors such as the various ecological feeding niches these groups exploit, or by variations in the methods used to record their behavior.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3