A two-part energy burden imposed by growth of Enterobacter cloacae and Escherichia coli in sodium dodecyl sulfate

Author:

Aspedon Arden,Nickerson Kenneth W.

Abstract

Enterobacter cloacae, like most enteric bacteria, can grow in the presence of 10% sodium dodecyl sulfate (SDS). The bacteria tolerate the detergent and do not metabolize it. In a defined glucose–salts medium the growth rate remained unchanged (G = 55 min) as the detergent concentration was increased from 0 to 10% SDS. However, growth in SDS exhibited a two-part energy dependence. In part 1, the SDS-grown cells underwent rapid lysis when they ran out of energy. Cells that had entered stationary phase owing to carbon limitation lysed, while those that had entered owing to nitrogen or phosphorus limitation did not. We attribute part 1 of the energy dependence to SDS as a detergent. In part 2, the cells grown in 5 or 10% SDS exhibited longer lag periods, potassium accumulation, decreased cell yields, and higher oxygen consumption. The higher oxygen consumption occurred during both exponential phase and nitrogen-limited stationary phase. However, the decreased cell yield and higher oxygen consumption of SDS-grown cells were mimicked by cells grown in equivalent concentrations of sucrose or polyethylene glycol. We attribute part 2 of the energy dependence to SDS as a solute. Finally, with regard to the as yet unidentified bacterial osmotic stress detector, we used the micelle-forming nature of SDS to conclude that the detector was responding to turgor pressure – water activity rather than to osmolarity itself.Key words: sodium dodecyl sulfate, bacterial detergent resistance, osmotic stress, oxygen consumption, energy-dependent cell lysis.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3