Constitutive model for rate-independent behavior of saturated frozen soils

Author:

Ghoreishian Amiri S.A.11,Grimstad G.11,Kadivar M.11,Nordal S.11

Affiliation:

1. Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Abstract

The mechanical behavior of frozen soils is strongly affected by the amount of ice. The amount of ice depends on the temperature and the applied mechanical stresses. The influence of ice content and temperature on the mechanical behavior and the coupling effects on the reverse direction can be mentioned as the main difference between frozen and unfrozen soils. In the light of this difference, an elastoplastic constitutive model for describing the stress–strain behavior of saturated frozen soils is proposed. By dividing the total stress into fluid pressure and solid phase stress, in addition to consideration of the cryogenic suction, the model is formulated within the framework of two-stress state variables. The proposed model is able to represent many of the fundamental features of the behavior of frozen soils, such as ice segregation phenomenon and strength weakening due to pressure melting. In the unfrozen state the model becomes a conventional critical state model. Typical predictions of the model for simulating the characteristic trends of the frozen soil behavior is described qualitatively. Model predictions are also compared with the available test results and reasonable agreement is achieved.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3