Helical piles in unsaturated structured soil: a case study

Author:

Tsuha Cristina de Hollanda Cavalcanti1,dos Santos Filho João Manoel Sampaio Mathias1,Santos Thiago da Costa2

Affiliation:

1. Department of Geotechnical Engineering, University of São Paulo at São Carlos, Av. Trabalhador Sãocarlense, 400, São Carlos, SP-13566-590, Brazil.

2. Transpetro/Petrobras, R. Felipe Camarão, 393, São Caetano do Sul, SP-09550-150, Brazil; formerly Department of Geotechnical Engineering, University of São Paulo at São Carlos, Brazil.

Abstract

The use of helical piles as tower foundations in Brazil has increased considerably during the last 5 years. A number of these piles are installed in unsaturated structured soils that cover a significant part of the Brazilian territory. However, the installation of helical piles in such soils produces a breakdown of the natural soil structure, which affects the pile performance for tension applications. This scenario motivates the present work, in which a comprehensive pile load-test program was carried out on helical piles composed of a single helix or multi-helices, installed in an unsaturated tropical residual soil. Eleven full-scale pile axial load tests were carried out, including two compression and nine tension tests. In addition, cone penetration tests were performed close to the piles after installation, and undisturbed soil samples were collected at the depth of the helices. The aim of these additional tests was to contribute to the understanding of the effect of helical pile installation on soil structure. The results of the tension load tests showed that the changes in the structure of the porous tested soil result in particularly low pile uplift capacities. In contrast, the load–settlement curves of the pile compression tests indicate a peculiar failure mechanism due to the sensitive soil structure associated with the high void ratio of the intact soil beneath the bottom plate.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3