Uplift tests on full-scale pipe segment in lumpy soft clay backfill

Author:

Chen R.P.11,Zhu B.11,Ni W.J.11

Affiliation:

1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China.

Abstract

Upheaval buckling of pipelines caused by thermal- and pressure-induced loading is an important issue in pipeline design. The uplift capacity of pipelines is determined by the pipe–soil interaction during pipeline upheaval in soil. Pipelines to be installed in soft clay are usually placed into trenches and then backfilled. In this paper, a set of test devices were developed and a series of full-scale model tests were carried out on a pipe segment buried in lumpy soft clay backfill, including backfilling tests, load-controlled uplift tests, and a displacement-controlled test. Eight total pressure transducers were embedded in the wall of the pipe segment to measure soil pressures on the pipe segment, and five linear variable differential displacement transducers (LVDTs) were arranged to record the vertical displacement of the pipe segment and the surface of the soft clay ground. The stabilizing force keeping the pipe segment in place during the backfilling process was found to fit a nearly linear relationship with the dimensionless undrained shear strength of soft clay. The variation of soil pressures on the pipe segment during uplift loading was significantly affected by the buried depth of the pipe segment and the undrained shear strength of the soil. For all present load-controlled tests in lumpy soft clay backfill, the test ultimate uplift resistances were only about 19%–81% of the results calculated by the Det Norske Veritas approach. Mainly due to the voids’ compression, shearing and strain softening of lumpy soft clay backfill, the difference between initial and stable displacements in a loading step for a load-controlled test or initial and stable loads in a displacement step for a displacement-controlled test is remarkable. The limits of uplift resistances are recommended for the instant and sustaining behaviors of the pipe segment, respectively.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference15 articles.

1. Design and Performance of the Imperial College Instrumented Pile

2. Soil restraint on buckling oil and gas pipelines buried in lumpy clay fill

3. DNV. 2007. Global buckling of submarine pipelines: structural design due to high temperature/high pressure. Recommended Practice F110, October 2007. Det Norske Veritas, Oslo, Norway.

4. A plasticity model for predicting the vertical and lateral behaviour of pipelines in clay soils

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3