Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation

Author:

Cheng Liang11,Shahin Mohamed A.11

Affiliation:

1. Department of Civil Engineering, Curtin University, Kent Street, Bentley, Perth, Western Australia 6102, Australia.

Abstract

This paper presents a novel approach for soil stabilization by microbially induced carbonate precipitation (MICP) using a new urease active catalyzer, named herein as “bioslurry”. The bioslurry, which was produced from the reaction between bacterial culture and 400 mmol/L of CaCl2 and urea, is pre-formed urease active crystals consisting of CaCO3 plus imbedded urease active bacterial cells. By mixing the bioslurry with sand, more than 95% of the bioslurry was retained in the soil matrix as a result of the mechanical trapping mechanism, leading to high resistance to flushing with a low-salinity solution. The retained urease activity of bioslurry was uniformly distributed along the sand matrix, resulting in a rather uniform CaCO3 precipitation. Through repeated treatments with a cementation solution, the unconfined compressive strength of bioslurry treated sand was significantly improved due to the effective CaCO3 precipitation at the contact points of soil grains. Scanning electron microscopy analysis carried out on the bioslurry treated sand revealed that the induced large rhombohedral CaCO3 crystals were localized around the bioslurry spherical fine crystals. The overall outcome of this work is that soil biocementation using the new bioslurry approach is controllable, reproducible, and homogeneous.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference28 articles.

1. A review of microbial precipitation for sustainable construction

2. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production

3. Factors Affecting Efficiency of Microbially Induced Calcite Precipitation

4. ASTM. 2013. Standard test method for unconfined compressive strength of cohesive soil. ASTM standard D2166. American Society for Testing and Materials, West Conshohocken, Pa. 10.1520/D2166-00.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3