Genetic diversity and population structure of cotton (Gossypiumspp.) of the New World assessed by SSR markers

Author:

Ulloa Mauricio1,Abdurakhmonov Ibrokhim Y.2,Perez-M. Claudia3,Percy Richard4,Stewart James McD.5

Affiliation:

1. U.S. Department of Agriculture – Agricultural Research Service, Southern Plains Area, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research, 3810 4th Street, Lubbock, TX 79415, USA.

2. The Center of Genomics and Bioinformatics, Academy of Sciences of Uzbekistan, Ministry of Agriculture and Water Resources,“Uzpakhtasanoat” Association, Tashkent, Republic of Uzbekistan.

3. Campo Experimental Iguala, Centro de Investigaciones Pacific sur-INIFAP, Iguala, Gro., Mexico.

4. U.S. Department of Agriculture – Agricultural Research Service, Southern Plains Area, Crop Germplasm Research. Unit, College Station, TX 79415, USA.

5. University of Arkansas, Department of Crop, Soil, and Environmental Sciences, Fayetteville, AR 72701, USA.

Abstract

A global analysis of cotton (Gossypium spp.) genetic diversity is the first step to understanding its geographical distribution, dissemination, genetic relatedness, and population structure. To assess the genetic diversity and population structure in Gossypium species, 111 cotton accessions representing five allotetraploids (AD1–AD5genomes), 23 Asiatic diploids of the Old World (A1and A2genomes), and 82 diploids of the New World subgenus Houzingenia (D1–D11genomes) species were assessed using simple sequence repeats (SSR) markers with wide genome coverage. The mean genetic distance (GD) between the two most important New World tetraploid cottons (Upland (Gossypium hirsutum L.) and Pima (Gossypium barbadense L.)) was 0.39. Among the three shrub type sections (Houzingenia, Integrifolia, and Caducibracteolata) and three arborescent sections (Erioxylum, Selera, and Austroamericana), the GD ranged between 0.19 and 0.41. Phylogenetic analyses clustered all species into distinct phylogenetic groups, which were consistent with genomic origin, evolutionary history, and geographic distribution or ecotypes of these accessions, suggesting the existence of clear structured strata. With all of the genomes, the highest statistical analysis of Structure test through measurements of ad hoc (ΔK) occurred at K = 2, with group Q1 with the Old World diploid A genomes and with group Q2 with all the New World diploids of the D genome. AD genome accessions shared nearly equal alleles from both Q1 and Q2 groups. With all of the diploids of the New World D genomes, the highest value of ΔK occurred at K = 5. These results are consistent with the fundamental knowledge of tetraploid AD-genome formation and the rapid radiation of the American diploid cotton linage that took place somewhere in southwestern Mexico, followed by a differentiation–speciation during angiosperm evolution. In addition, SSR markers provide an alternative solution for distinguishing phylogenetic relationships between accessions of different ecotypes and for elucidating population structure of cottons of the New World.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3