Abstract
Fermented foods are of importance worldwide. Most are prepared under nonsterile conditions using mixed cultures, either deliberately or unavoidably. Fungal mixed cultures show interactive relations at various levels. In this paper, inhibitory effects among fungi owing to competition, formation of organic acids, toxic proteins, and mycotoxins are discussed. In addition, fungi show inhibitory effects towards bacteria and vice versa, through pH changes, and excretion of organic acids, antibiotics, peptides, etc. Stimulatory interactions among fungi and between fungi and bacteria relate mainly to carbon and nitrogen metabolism, and they play an important role in the inherent stability of mixed-culture systems maintained by enrichment techniques. Better understanding of natural mixed-culture fermentations has evolved into the development of the concept of cocultivation employing compatible microbial strains of complementary metabolic ability. Especially in the area of direct conversion of complex carbohydrates (e.g., starch, inulin, or lignocellulosic matter into ethanol), cocultivation has much to offer. Genetic modification of starter organisms offers opportunities to improve, for example, their ability to degrade substrate with a minimum of catabolite repression, and produce final products of superior quality. This is illustrated by recent recombinant DNA constructs for alcoholic fermentations. Key words: food, fungi, interaction, inhibition, stimulation, cocultivation.
Publisher
Canadian Science Publishing
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献