Adenosine A2 receptors are involved in the activation of ATP-sensitive K+ currents during metabolic inhibition in guinea pig ventricular myocytes

Author:

Pan Sheng-Jun1,Li Li-Rong1

Affiliation:

1. Huanghuai University Department of Nursing, Zhumadian, Henan 463000, China.

Abstract

It has been hypothesized that an interaction among adenosine A1 receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (KATP) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of KATP is functionally coupled to A1 receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of KATP currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of KATP currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of KATP under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A2 receptor antagonist alloxazine reversed the time course activation of the KATP current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of KATP with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of KATP by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of KATP currents during MI with PMA pretreatment. There is no direct evidence of activation of KATP currents by adenosine A1 receptor during metabolic inhibition under our experimental condition. However, adenosine A2 receptor activation is involved in the KATP channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open KATP during MI, but a possible link between the adenosine A2 receptor and PKC activation in this process needs further elucidation.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3