Examination of the proposition that Cu(II) can be required for charge neutrality in a sulfide lattice — Cu in tetrahedrites and sphalerite

Author:

Buckley Alan N,Skinner William M,Harmer Sarah L,Pring Allan,Lamb Robert N,Fan Liang-Jen,Yang Yaw-wen

Abstract

Synchrotron XPS and Cu L2,3-edge NEXAFS spectroscopic data for a natural tetrahedrite surface prepared by fracture under UHV were in accord with the composition of the mineral and its expected semiconductivity. The 2p binding energy for the 6-coordinate S atoms was found to be not detectably greater than that for the 4-coordinate S atoms, and surface species were not clearly discernible in either surface-optimized S 2p or Cu 2p spectra. The Cu 2p and Cu L2,3-edge spectra indicated that all Cu in the mineral was indisputably Cu(I). The Cu L2,3-edge spectra of relatively pure natural sphalerite treated with mildly acidic aqueous cupric solution revealed the presence of Cu(II) in the outermost layer of the fracture surfaces, but it was concluded that most of the Cu near the surface of the mineral was in formal oxidation state Cu(I), albeit with higher than normal d9 character. The Cu(I) absorption peak was at an energy much lower than for the tetrahedrite absorption edge, but still consistent with Cu(I) in 4-fold coordination by S. The Cu(II) was consistent with Cu bonded both to S atoms in the outermost layer of the sphalerite and to O atoms in chemisorbed water. S 2p spectra determined at different photon energies revealed high binding energy components arising from oligosulfide-like environments in the outermost layers, but not necessarily in a completely restructured lattice and not in a Cu oligosulfide only. The data indicated some loss of Zn in addition to the Zn that had been replaced by Cu in the outermost layers of the sulfide lattice. The presence of these oligosulfide-like environments precluded the detection of S with formal oxidation state greater than (-II) that might have arisen only from Cu(I) in the S lattice. No evidence was obtained for the presence of Cu(II) in a sulfide lattice, but it was not possible to exclude the possibility of a very low concentration because of the presence of the Cu(II) bonded to both S and O at the surface of the treated sphalerite.Key words: tetrahedrite, sphalerite, copper uptake, XPS, NEXAFS.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3