Hexose transport in plasma membrane vesicles of rat myoblast L6

Author:

Cheung Matthias O.,Lo Theodore C. Y.

Abstract

To determine the molecular mechanism of hexose transport in rat myoblasts, transport studies were carried out with purified plasma membrane vesicles. Rat myoblasts were homogenized and fractionated by differential and sucrose gradient centrifugation. Six different fractions were obtained. Studies with marker enzymes revealed that two fractions (A and B) were composed of only plasma membrane. These two fractions differed considerably in their physical properties. Fraction A was composed of large multilaminated vesicles, with an intravesicular volume of 50 μL/mg protein, whereas fraction B was composed of membrane fragments and much smaller vesicles, with an intravesicular volume of 7 μL/mg protein. Based on the response of the ouabain-sensitive Na+,K+-ATPase activity to sodium dodecyl sulfate and ionophore treatments, it seemed likely that fraction A was composed of a significant amount of sealed right-side-out vesicles, whereas fraction B was composed of mainly membrane sheets or leaky vesicles. The initial rate of hexose influx into the membrane vesicles was determined by the flow dialysis technique. The optimal conditions for 2-deoxyglucose (2-DG) uptake into the plasma membrane vesicles were either 50 mM phosphate buffer or 10 mM 2-(N-2-hydroxyethylpiperazin-N′-yl)ethanesulfonic acid buffer at pH 7.0. In the presence of 500 μM 2-DG, the initial rates of 2-DG influx were 295 and 49 nmol/min per milligram protein for fractions A and B, respectively. In other words, after 1 min of incubation, the intravesicular concentration of 2-DG was around 6 mM, about 10 times the extravesicular concentration. D-Glucose was taken up to a similar extent (333 nmol/min per milligram protein), whereas L-glucose only equilibrated across the plasma membrane. Analysis of the fate of 2-DG revealed that the substrate was not phosphorylated upon incubation with the vesicles. Transport activity can be abolished either by disruption of the membrane vesicles or by reduction of the electrical potential across the membrane.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of the GLUT 4 transporter in regulating rat myoblast glucose transport processes;Biochimica et Biophysica Acta (BBA) - Biomembranes;1998-05

2. Kinetic separation and characterization of three sugar transport modes in Caco-2 cells;American Journal of Physiology-Gastrointestinal and Liver Physiology;1996-05-01

3. Use of hexose transport mutants to examine the expression and properties of the rat myoblast GLUT 1 transport process;Biochimica et Biophysica Acta (BBA) - Biomembranes;1995-03

4. Transcripts for the high and low affinity hexose transporters in rat myoblasts.;Journal of Biological Chemistry;1993-11

5. Brain membrane protein band 3 performs the same functions as erythrocyte band 3.;Proceedings of the National Academy of Sciences;1991-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3