Incidence of blossom-end rot in elongated tomato fruit

Author:

Riboldi Lucas Baiochi1,Araújo Sabrina Helena da Cruz1,de Freitas Sérgio Tonetto2,Camargo e Castro Paulo Roberto de1

Affiliation:

1. Biological Sciences Department, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Avenida Pádua Dias 11, Piracicaba, São Paulo, Brazil.

2. Postharvest Biology and Technology, Brazilian Agricultural Research Corporation, Embrapa, Petrolina, Pernambuco, Brazil.

Abstract

Blossom-end rot (BER) is a physiological disorder that can affect 100% of the fruit crop depending on the genotype. Tomato varieties with elongated fruit usually have a greater susceptibility to BER than other varieties. To evaluate and identify the possible physiological and morphological characteristics related to the onset of BER development, four varieties of long-shape tomato fruit with different susceptibility to BER: ‘San Marzano,’ ‘Banana Legs,’ ‘Roma,’ and ‘Mini-Roma’ were examined. Our results show that ‘San Marzano’ and ‘Banana Legs’ (elongated fruit) had a higher incidence of BER and lower Ca2+ concentration in the distal fruit tissue. ‘San Marzano’ (the most elongated fruit) presented higher electrolyte leakage in the distal fruit tissue. By comparison, ‘Roma’ and ‘Mini-Roma’ (less elongated fruit) were less susceptible to BER and had a higher ratio for proximal/distal fruit Ca2+ and a lower distal cell-wall bound content of Ca2+. Additionally, xylem functionality (vessels transporting water and solutes) in the distal fruit tissue was also higher in these more-tolerant varieties. These results support the theory that total fruit content of Ca2+ is not the only factor determining fruit susceptibility to BER, but rather a balance between physiological and morphological factors that influence Ca2+ transport and allocation in the fruit.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3