Ti-coated BC2N nanotubes as hydrogen storage materials

Author:

Jalili Seifollah12,Molani Farzad1,Schofield Jeremy3

Affiliation:

1. Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416 Tehran, Iran.

2. Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531 Tehran, Iran.

3. Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, ON M5S 3H6, Canada.

Abstract

Density functional theory (DFT) calculations have been performed to investigate Ti adsorption on BC2N nanotubes and the hydrogen adsorption capacity of Ti-coated structures. Different adsorption sites have been examined for the Ti adatom, and it is found that the most stable structure has a configuration with alternating columns of carbon and boron–nitrogen hexagons. The DFT calculations indicate that an adsorbed Ti atom on a carbon hexagon can bind four hydrogen molecules in molecular form, while Ti atoms on boron–nitride hexagons can adsorb three hydrogen molecules and two hydrogen atoms. Based on the calculations, the gravimetric efficiency corresponding to decoration of 67% of six carbon rings with Ti adatoms is estimated to be 8 wt %. Computation of the charge transfer reveals that the Ti atom on BC2N is in a cationic state. In addition, Ti adsorption has a significant influence on the electronic structure of the nanotubes and allows for the conversion of nanotubes from semiconductors in the pristine state to conductors upon doping. The interactions between the nanotubes, the Ti atom and hydrogen molecules have also been analyzed using Dewar coordination and Kubas interactions.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3