Affiliation:
1. Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland.
2. Institute of Biological Rudiments of Animal Diseases, Agricultural University in Lublin, Akademicka 12, 20-033 Lublin, Poland.
Abstract
Candida albicans and Malassezia pachydermatis cause human and animal infections of the skin and internal organs. We compare the properties of two enzymes, pyruvate decarboxylase (PDC) and malate dehydrogenase (MDH), from these species and from Saccharomyces cerevisiae cultivated under aerobic and anaerobic conditions to find differences between the enzymes that adapt pathogens for virulence and help us in searching for new antifungal agents. Malassezia pachydermatis did not show any growth under anaerobic conditions, as opposed to C. albicans and S. cerevisiae. Under aerobic conditions, C. albicans showed the highest growth rate. Malassezia pachydermatis, contrary to the others, did not show any PDC activity, simultaneously showing the highest MDH activity under aerobic conditions and a Kmvalue for oxaloacetate lower than S. cerevisiae. Candida albicans and S. cerevisiae showed a strong decrease in MDH activity under anaerobic conditions. Candida albicans shows four different isoforms of MDH, while M. pachydermatis and S. cerevisiae are characterized by two and three isoforms. Candida albicans shows about a twofold lower activity of PDC but, simultaneously, almost a threefold lower Kmvalue for pyruvate in comparison with S. cerevisiae. The PDC apoform share under aerobic conditions in C. albicans was 47%, while in S. cerevisiae was only 26%; under anaerobic conditions, the PDC apoform decreased to 12% and 8%, respectively. The properties of enzymes from C. albicans show its high metabolic flexibility (contrary to M. pachydermatis) and cause easy switching between fermentative and oxidative metabolism. This feature allows C. albicans to cause both surface and deep infections. We take into consideration the use of thiamin antimetabolites as antifungal factors that can affect both oxidative and fermentative metabolism.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献